OpenAI

On November 21, OpenAI released a white paper detailing how they approach external red teaming. The abstract of the paper reads:

Red teaming has emerged as a critical practice in assessing the possible risks of AI models and systems. It aids in the discovery of novel risks, stress testing possible gaps in existing mitigations, enriching existing quantitative safety metrics, facilitating the creation of new safety measurements, and enhancing public trust and the legitimacy of AI risk assessments. This white paper describes OpenAI’s work to date in external red teaming and draws some more general conclusions from this work. We describe the design considerations underpinning external red teaming, which include: selecting composition of red team, deciding on access levels, and providing guidance required to conduct red teaming. Additionally, we show outcomes red teaming can enable such as input into risk assessment and automated evaluations. We also describe the limitations of external red teaming, and how it can fit into a broader range of AI model and system evaluations. Through these contributions, we hope that AI developers and deployers, evaluation creators, and policymakers will be able to better design red teaming campaigns and get a deeper look into how external red teaming can fit into model deployment and evaluation processes. These methods are evolving and the value of different methods continues to shift as the ecosystem around red teaming matures and models themselves improve as tools for red teaming.

Read the full paper here.